Read Online Download Applied Hydrology Mcgraw Hill Civil Engineering

If you ally compulsion such a referred download applied hydrology mcgraw hill civil engineering book that will give you worth, acquire the entirely best seller from us currently from several preferred authors. If you want to funny books, lots of novels, tale, jokes, and more fictions collections are after that launched, from best seller to one of the most current released.

You may not be perplexed to enjoy every books collections download applied hydrology mcgraw hill civil engineering that we will totally offer. It is not with reference to the costs. Its very nearly what you obsession currently. This download applied hydrology mcgraw hill civil engineering, as one of the most operational sellers here will unconditionally be along with the best options to review.

Applied Hydrology

- Ven Te Chow 2010
- Ray K. Linsley 1975

Handbook of Applied Hydrology, Second Edition

- Vijay P. Singh
 2016-03-07 Fully Updated Hydrology Principles, Methods, and Applications
 Thoroughly revised for the first time in 50 years, this industry-standard resource features chapter contributions from a “who’s who” of international hydrology experts. Compiled by a colleague of the late Dr. Chow, Chow’s Handbook of Applied Hydrology, Second Edition, covers scientific and engineering fundamentals and presents all-new methods, processes, and technologies. Complete details are provided for the full range of ecosystems and models. Advanced chapters look to the future of hydrology, including climate change impacts, extraterrestrial water, social hydrology, and water security. Chow’s Handbook of Applied Hydrology, Second Edition, covers:
 - The Fundamentals of Hydrology
 - Data Collection and Processing
 - Hydrology Methods
 - Hydrologic Processes and Modeling
 - Sediment and Pollutant Transport
 - Hydrometeorologic and Hydrologic Extremes
 - Systems Hydrology
 - Hydrology of Large River and Lake Basins
 - Applications and Design
 - The Future of Hydrology

Engineering Hydrology

- K. Subramanya 1994-01-01

Chow's Handbook of Applied Hydrology, Second Edition

Vijay Singh
2016-03-07 This classic hydrology resource has been fully revised to reflect the latest advances and applications Long considered the “go to” book on the hydrologist’s shelf, this comprehensive handbook has been thoroughly updated for the first time in 50 years. Chow’s Handbook of Applied Hydrology, Second Edition discusses the history of hydrologic science and engineering and offers new topics, methods, processes and technologies. Featuring chapter contributions from a “who’s who” in the field, this volume offers user-friendly explanations of hydrology principles and their latest, practical uses. Details are provided for a wide range of ecosystems, including large river and lake basins. You will get full coverage of hydrologic modeling and design, hydrometeorology, sediment and pollutant transport, and much more. Hydrology experts from around the world offer case studies and insights throughout End-of-chapter summaries and
Applied Hydrogeology-C. W. Fetter 2018-04-26 Hydrogeology’s importance has grown to become an integral part not only of geology curricula, but also those in environmental science and engineering. Applied Hydrogeology serves all these students, presenting the subject’s fundamental concepts in addition to its importance in other disciplines. Fetter skillfully addresses both physical and chemical hydrogeology, highlighting problem solving throughout the book. Case studies, Excel-based projects, and working student versions of software used by groundwater professionals supplement the fourth edition’s insightful explanations and succinct solutions to real-world challenges. Each chapter concludes with example problems, a notation of symbols, and informative analysis. A glossary of hydrogeological terms adds significant value to this comprehensive text. Fetter’s accessible coverage prepares readers for success in their careers well beyond the classroom.

Applied Hydrology-K. N. Mutreja 1986-01-01

Water Resources Sustainability-Larry W. Mays 2007 Providing clean water to earth’s rapidly growing human population is one the major issues of the 21st Century. The climatic effects of global warming on water supply has made this a hot-button issue.

Concise Hydrology-

Hydrology-H. M. Raghunath 2006 An attempt is made to place before students (degree and post-degree) and professionals in the fields of Civil and Agricultural Engineering, Geology and Earth Sciences, this important branch of Hydroscience, i.e., Hydrology. It deals with all phases of the Hydrologic cycle and related opics in a lucid style and in metric system.

Stream Hydrology-Nancy D. Gordon 2013-05-03 Since the publication of the first edition (1994) there have been rapid developments in the application of hydrology, geomorphology and ecology to stream management. In particular, growth has occurred in the areas of stream rehabilitation and the evaluation of environmental flow needs. The concept of stream health has been adopted as a way of assessing stream resources and setting management goals. Stream Hydrology: An Introduction for Ecologists Second Edition documents recent research and practice in these areas. Chapters provide information on sampling, field techniques, stream analysis, the hydrodynamics of moving water, channel form, sediment transport and commonly used statistical methods such as flow duration and flood frequency analysis. Methods are presented from engineering hydrology, fluvial geomorphology and hydraulics with examples of their biological implications. This book demonstrates how these fields are linked and utilised in modern, scientific river management. Emphasis on applications, from collecting and analysing field measurements to using data and tools in stream management. Updated to include new sections on environmental flows, rehabilitation, measuring stream health and stream classification. Critical reviews of the successes and failures of implementation. Revised and updated windows-based AQUAPAK software. This book is essential reading for 2nd/3rd year undergraduates and postgraduates of hydrology, stream ecology and fisheries science in Departments of Physical Geography, Biology, Environmental Science, Landscape Ecology, Environmental Engineering and Limnology. It would be valuable reading for professionals working in stream ecology, fisheries science and habitat management, environmental consultants and engineers.
Engineering Hydrology: An Introduction to Processes, Analysis, and Modeling
Sharad K. Jain 2019-03-08 Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Understand the fundamentals, methods, and processes of modern hydrology. This comprehensive engineering textbook offers a thorough overview of all aspects of hydrology and shows how to apply hydrologic principles for effective management of water resources. It presents detailed explanations of scientific principles along with real-world applications and technologies. Engineering Hydrology: An Introduction to Processes, Analysis, and Modeling follows a logical progression that builds on foundational concepts with modern hydrologic methods. Every hydrologic process is clearly explained along with current techniques for modeling and analyzing data. You will get practice problems throughout that help reinforce important concepts. Coverage includes: •The hydrologic cycle •Water balance •Components of the hydrologic cycle •Evapotranspiration •Infiltration and soil moisture •Surface water •Groundwater •Water quality •Hydrologic measurements •Streamflow measurement •Remote sensing and geographic information systems •Hydrologic analysis and modeling •Unit hydrograph models •River flow modeling •Design storm and design flood estimation •Environmental flows •Impact of climate change on water management

Hydrology and Hydraulic Systems
Ram S. Gupta 2016-09-07 For more than 25 years, the multiple editions of Hydrology & Hydraulic Systems have set the standard for a comprehensive, authoritative treatment of the quantitative elements of water resources development. The latest edition extends this tradition of excellence in a thoroughly revised volume that reflects the current state of practice in the field of hydrology. Widely praised for its direct and concise presentation, practical orientation, and wealth of example problems, Hydrology & Hydraulic Systems presents fundamental theories and concepts balanced with excellent coverage of engineering applications and design. The Fourth Edition features a major revision of the chapter on distribution systems, as well as a new chapter on the application of remote sensing and computer modeling to hydrology.

Water Resources Engineering
Larry W. Mays 2010-06-08 Environmental engineers continue to rely on the leading resource in the field on the principles and practice of water resources engineering. The second edition now provides them with the most up-to-date information along with a remarkable range and depth of coverage. Two new chapters have been added that explore water resources sustainability and water resources management for sustainability. New and updated graphics have also been integrated throughout the chapters to reinforce important concepts. Additional end-of-chapter questions have been added as well to build understanding. Environmental engineers will refer to this text throughout their careers.

Urban Stormwater Management Tools
Larry W. Mays 2004 In-depth reference coverage of the powerful methods for managing urban stormwater and preventing sewage overflows and flooding.

Arc Hydro Groundwater
Gil Strassberg 2011-01-01 Arc Hydro Groundwater: GIS for Hydrogeology describes the groundwater data model, a new geodatabase design for representing groundwater systems using...
ArcGIS software. The groundwater data model shares a common framework with the surface water components of the Arc Hydro data model, offering a comprehensive overview of water resources. Arc Hydro Groundwater uses sample datasets from the Edwards Aquifer and other locations in Texas to address the data model framework, 3D subsurface representation, geological mapping, 3D hydrogeologic models, time series for hydrologic systems, and groundwater simulation models.

Problem Solving in Engineering Hydrology - Faris Faris 2015-08-13
Objectives of the book are meant to fulfill the main learning outcomes for students registered in named courses, which covered the following:
- Solving problems in hydrology and making decisions about hydrologic issues that involve uncertainty in data, scant/incomplete data, and the variability of natural materials.
- Designing a field experiment to address a hydrologic question.
- Evaluating data collection practices in terms of ethics.
- Interpreting basic hydrological processes such as groundwater flow, water quality issues, water balance and budget at a specific site at local and regional scales based on available geological maps and data sets.
- Conceptualizing hydrogeology of a particular area in three dimensions and be able to predict the effects on a system when changes are imposed on it.
Learning outcomes are expected to include the following:
- Overview of essential concepts encountered in hydrological systems.
- Developing a sound understanding of concepts as well as a strong foundation for their application to real-world, in-the-field problem solving.
- Acquisition of knowledge by learning new concepts, and properties and characteristics of water.
- Cognitive skills through thinking, problem solving and use of experimental work and inferences.
- Numerical skills through application of knowledge in basic mathematics and supply issues.
- Student becomes responsible for their own learning through solution of assignments, laboratory exercises and report writing.

"Problem solving in engineering hydrology" is primarily proposed as an addition and a supplementary guide to fundamentals of engineering hydrology. Nevertheless, it can be sourced as a standalone problem solving text in engineering hydrology. The book targets university students and candidates taking first degree courses in any relevant engineering field or related area. The document is valued to have esteemed benefits to postgraduate students and professional engineers and hydrologists. Likewise, it is expected that the book will stimulate problem solving learning and quicken self-teaching. By writing such a script it is hoped that the included worked examples and problems will guarantee that the booklet is a precious asset to student-centered learning. To achieve such objectives immense care was paid to offer solutions to selected problems in a well-defined, clear and discrete layout exercising step-by-step procedure and clarification of the related solution employing vital procedures, methods, approaches, equations, data, figures and calculations. The new edition of the book hosted the incorporation of computer model programs for the different hydrological scenarios and encountered problems presented throughout the book. Developed programs were coded with Microsoft Visual Basic.NET 10 programming language, using Microsoft Visual Studio 2010 Professional Edition. Most of the examples herein have an equivalent code listed alongside through the text. To avoid repetition though, some example programs were omitted whenever there was resemblance to another example elsewhere, to which the reader is kindly requested to refer to.

Soil Conservation Service Curve Number (SCS-CN) Methodology - S.K. Mishra 2003-02-28
The Soil Conservation Service (SCS) curve number (CN) method is one of the most popular methods for computing the runoff volume from a rainstorm. It is popular because it is simple, easy to understand and apply, and stable, and accounts for most of the runoff producing watershed characteristics, such as soil type, land use, hydrologic condition, and antecedent moisture condition. The SCS-CN method was originally developed for its use on small agricultural watersheds and has since been extended and applied to rural, forest and urban watersheds. Since the inception of the method, it has been applied to a wide range of environments. In recent years, the method has received much attention in the hydrologic literature. The SCS-CN method was first published in 1956 in Section-4 of the National Engineering Handbook of Soil Conservation Service (now called the Natural Resources Conservation Service), U. S. Department of Agriculture. The publication has since been revised several times. However, the contents of the methodology have been nonetheless more or less the same. Being an agency methodology, the method has not
passed through the process of a peer review and is, in general, accepted in the form it exists. Despite several limitations of the method and even questionable credibility at times, it has been in continuous use for the simple reason that it works fairly well at the field level.

Applied Machine Learning - M. Gopal 2018-05-15 This text covers all the fundamentals and presents basic theoretical concepts and a wide range of techniques (algorithms) applicable to challenges in our day-to-day lives. The book recognizes that most of the ideas behind machine learning are simple and straightforward. It provides a platform for hands-on experience through self-study machine learning projects. Datasets for some benchmark applications have been explained to encourage the use of algorithms covered in this book. This is a comprehensive text book on machine learning for undergraduates in computer science and all engineering degree programs. Post graduates and research scholars will find it a useful initial exposure to the subject, before they go for highly theoretical depth in the specific areas of their research. For engineers, scientists, business managers and other practitioners, the book will help build the foundations of machine learning.

Water Resources of Chile - Bonifacio Fernández 2020 Chile is a privileged country in terms of water resources, with an average annual runoff of approximately 50,000 m3/person. However, water availability varies enormously in space, as less than 1,000 m3/person are available for more than 50% of the population. The temporal and spatial distribution of water resources is driven by processes highly variables across a country with different climates explained not only by a large range of latitudes (from 17 to 56 south), but also the presence of the Pacific Ocean and the Andes with peaks up to 7000 m. This geography makes of Chile a true natural laboratory in which water is essential for the society and the economy of the country. The relevance of water resources for the country has become even more significant in the context of a mega-drought that has affected practically the entire territory in recent years, although large floods such as those in Atacama 2015 and 2017 also take place periodically. This unique book brings together the state-of-art knowledge about the hydrology of Chile and its water resources, with a particular focus on quantitative aspects. The chapters are prepared by many of the most relevant researchers and practitioners working in water resources in the country. High-quality research contributions on climate and meteorology, surface and subsurface hydrology, water quality, water monitoring, water resource and global change, among other issues, are presented in this unique book, which offers a useful guide for academicians, researchers, practitioners and managers dealing with diverse water-related issues in Chile and other regions with similar characteristics.

Hydrology and Floodplain Analysis - Philip B. Bedient 2015-02-13 This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For undergraduate and graduate courses in Hydrology. This text offers a clear and up-to-date presentation of fundamental concepts and design methods required to understand hydrology and floodplain analysis. It addresses the computational emphasis of modern hydrology and provides a balanced approach to important applications in watershed analysis, floodplain computation, flood control, urban hydrology, stormwater design, and computer modeling. This text is perfect for engineers and hydrologists.

Engineering Hydrology - RAJESH SRIVASTAVA 2017-05-01 The book is primarily aimed at the undergraduate students and practising engineers may find it useful to brush-up their concepts and to know about the latest developments in the field of Hydrology. The objective, is to convey the concepts to students in a simple and easily understandable manner and to also have sufficient advanced level material to arouse the curiosity of those who want to look beyond their curriculum. Salient Features: - Last two chapters describe the application of concepts like, precipitation, evapotranspiration, infiltration etc - Discusses SCS method in detail - Coverage on estimation of the direction of ground water from head measured in different wells.
Hydrology and the Management of Watersheds - Kenneth N. Brooks
2012-10-01 This new edition is a major revision of the popular introductory reference on hydrology and watershed management principles, methods, and applications. The book's content and scope have been improved and condensed, with updated chapters on the management of forest, woodland, rangeland, agricultural urban, and mixed land use watersheds. Case studies and examples throughout the book show practical ways to use web sites and the Internet to acquire data, update methods and models, and apply the latest technologies to issues of land and water use and climate variability and change.

Urban Water Cycle Processes and Interactions - Jiri Marsalek
2014-04-21 Effective management of urban water should be based on a scientific understanding of the impact of human activity on both the urban hydrological cycle - including its processes and interactions - and the environment itself. Such anthropogenic impacts, which vary broadly in time and space, need to be quantified with respect to local climate, urban d

Encyclopedia of Snow, Ice and Glaciers - Vijay P. Singh 2011-06-29 The earth's cryosphere, which includes snow, glaciers, ice caps, ice sheets, ice shelves, sea ice, river and lake ice, and permafrost, contains about 75% of the earth's fresh water. It exists at almost all latitudes, from the tropics to the poles, and plays a vital role in controlling the global climate system. It also provides direct visible evidence of the effect of climate change, and, therefore, requires proper understanding of its complex dynamics. This encyclopedia mainly focuses on the various aspects of snow, ice and glaciers, but also covers other cryospheric branches, and provides up-to-date information and basic concepts on relevant topics. It includes alphabetically arranged and professionally written, comprehensive and authoritative academic articles by well-known international experts in individual fields. The encyclopedia contains a broad spectrum of topics, ranging from the atmospheric processes responsible for snow formation; transformation of snow to ice and changes in their properties; classification of ice and glaciers and their worldwide distribution; glaciation and ice ages; glacial dynamics; glacier surface and subsurface characteristics; geomorphic processes and landscape formation; hydrology and sedimentary systems; permafrost degradation; hazards caused by cryospheric changes; and trends of glacier retreat on the global scale along with the impact of climate change. This book can serve as a source of reference at the undergraduate and graduate level and help to better understand snow, ice and glaciers. It will also be an indispensable tool containing specialized literature for geologists, geographers, climatologists, hydrologists, and water resources engineers; as well as for those who are engaged in the practice of agricultural and civil engineering, earth sciences, environmental sciences and engineering, ecosystem management, and other relevant subjects.

Soil Conservation Service Curve Number (SCS-CN) Methodology - S.K. Mishra 2013-03-14 The Soil Conservation Service (SCS) curve number (CN) method is one of the most popular methods for computing the runoff volume from a rainstorm. It is popular because it is simple, easy to understand and apply, and stable, and accounts for most of the runoff producing watershed characteristics, such as soil type, land use, hydrologic condition, and antecedent moisture condition. The SCS-CN method was originally developed for its use on small agricultural watersheds and has since been extended and applied to rural, forest and urban watersheds. Since the inception of the method, it has been applied to a wide range of environments. In recent years, the method has received much attention in the hydrologic literature. The SCS-CN method was first published in 1956 in Section-4 of the National Engineering Handbook of Soil Conservation Service (now called the Natural Resources Conservation Service), U. S. Department of Agriculture. The publication has since been revised several times. However, the contents of the methodology have been nonetheless more or less the same. Being an agency methodology, the method has not passed through the process of a peer review and is, in general, accepted in the form it exists. Despite several limitations of the method and even questionable credibility at times, it has been in continuous use for the simple reason that it works fairly well at the field level.

Practical Hydrogeology: Principles and Field Applications, Third Edition - Willis D. Weight 2019-02-01 Master the latest advances in hydrogeology using this fully updated resource. This thoroughly revised guide clearly explains cutting-edge hydrogeology techniques that can be applied in the field. Featuring contributions from leading experts, Practical Hydrogeology: Principles and Field Applications, Third Edition, shows how to plan and conduct site investigations, avoid pitfalls in the field, interpret a wide array of data types gathered, and prepare water-quality reports. You will get complete coverage of key procedures, including aquifer testing, groundwater sampling, water-quality assessment, aquifer characterization, and tracer tests. This third edition has been reorganized and expanded with up-to-date information, a new chapter, review questions, and real-world examples. Coverage includes: • Field hydrogeology • The geology of hydrogeology • Aquifer properties • Groundwater flow • Pumping tests • Slug testing • Aquifer hydraulics • Water chemistry sampling • Groundwater/surface-water interaction • Vadose-zone analysis • Karst hydrogeology and tracer tests • Drilling and well completion

Open-channel Hydraulics - Ven Te Chow 2009 Open-Channel Hydraulics, originally published in 1959, deals with the design for flow in open channels and their related structures. Covering both theory and practice, it attempts to bridge the gap that generally exists between the two. Theory is introduced first and is then applied to design problems. In many cases the application of theory is illustrated with practical examples. Theory is frequently simplified by adopting theoretically less rigorous treatments with sound concepts, by avoiding use of advanced mathematical manipulations, or by replacing such manipulations with practical numerical procedures. To facilitate understanding of the subject matter, the treatment is mostly based on the condition of one- or two-dimensional flow. The book deals mainly with American practice but also includes related information from many countries throughout the world. Material is divided into five main sections for an orderly and logical treatment of the subject: Basic Principles, Uniform Flow, Varied Flow, Rapidly Varied Flow, and Unsteady Flow. There are 67 illustrative examples, 282 illustrations, 319 problems, and 810 references. This classic textbook was the first English-language book on the subject in two decades. Open-Channel Hydraulics is a valuable text for students of engineering mechanics, hydraulics, civil, agricultural, sanitary, and mechanical engineering, and a helpful compendium for practicing engineers. Dr. Ven Te Chow was a Professor of Hydraulic Engineering and led the hydraulic engineering research and teaching programs at the University of Illinois. Through many years of experience as a teacher, engineer, researcher, writer, lecturer, and consultant, he became an internationally recognized leader in the fields of hydraulics, hydrology and hydraulic engineering. Dr. Ven Te Chow authored two technical books and more than 60 articles and papers in scientific engineering magazines and journals. He was a member of IAHR, ASCE, AGU, AAAS, SEE, and Sigma Xi, and had been Chairman of the American Geophysical Union's Permanent Research Committee on Runoff.

Geographic Information Science for Land Resource Management - Suraj Kumar Singh 2021-06-15 Geographic Information Science for Land Resource Management is a comprehensive book focusing on managing land resources using innovative techniques of spatial information sciences and satellite remote sensing. The enormous stress on the land resources over the years due to anthropogenic activities for commercialization and livelihood needs has increased manifold. The only solution to this problem lies in the stakeholders' awareness, which can only be attained through scientific means. The awareness is the basis of the sustainable development concept, which involves optimal management of natural resources, subject to the availability of reliable, accurate, and timely information from the global to local scales. GIScience consists of satellite remote sensing (RS), Geographical Information System (GIS), and Global Positioning System (GPS) technology that is nowadays a backbone of environmental protection, natural resource management, and sustainable development and planning.
Being a powerful and proficient tool for mapping, monitoring, modeling, and managing natural resources can help understand the earth’s surface and its dynamics at different observational scales. Through the spatial understanding of land resources, policymakers can make prudent decisions to restore and conserve critically endangered resources, such as water bodies, lakes, rivers, air, forests, wildlife, biodiversity, etc. This innovative new volume contains chapters from eminent researchers and experts. The primary focus of this book is to replenish the gap in the available literature on the subject by bringing the concepts, theories, and experiences of the specialists and professionals in this field jointly. The editors have worked hard to get the best literature in this field in a book form to help the students, researchers, and policymakers develop a complete understanding of the land system’s vulnerabilities and solutions.

Flood Risk Assessment and Management-Dawei Han 2011-01-26
"Floods are devastating natural disasters with a significant impact on human life and the surrounding environment. Flood Risk Assessment and Management should serve as an ideal textbook on analytical flood risk assessment and management, and is intended for"

Construction Operations Manual of Policies and Procedures-Andrew Civitello 2007-10-09 Smooth the managerial side of running a small- to mid-sized contracting firm with this paperwork slashing, time-saving, business-boosting reference. Readers will find methods, strategies and tactics, forms, checklists, and ready-to-copy letters laid out in a concise easy-to-follow format. The new fourth edition offers 20% more forms and checklists, covers the latest developments in construction management software, along with new material on the Design-Build process. The CD-ROM contains project delivery forms, sample letters, checklists, and more.

Hydrology in Practice-Elizabeth M. Shaw 2017-12-21 Hydrology in Practice is an excellent and very successful introductory text for engineering hydrology students who go on to be practitioners in consultancies, the Environment Agency, and elsewhere. This fourth edition of Hydrology in Practice, while retaining all that is excellent about its predecessor, by Elizabeth M. Shaw, replaces the material on the Flood Studies Report with an equivalent section on the methods of the Flood Estimation Handbook and its revisions. Other completely revised sections on instrumentation and modelling reflect the many changes that have occurred over recent years. The updated text has taken advantage of the extensive practical experience of the staff of JBA Consulting who use the methods described on a day-to-day basis. Topical case studies further enhance the text and the way in which students at undergraduate and MSc level can relate to it. The fourth edition will also have a wider appeal outside the UK by including new material on hydrological processes, which also relate to courses in geography and environmental science departments. In this respect the book draws on the expertise of Keith J. Beven and Nick A. Chappell, who have extensive experience of field hydrological studies in a variety of different environments, and have taught undergraduate hydrology courses for many years. Second- and final-year undergraduate (and MSc) students of hydrology in engineering, environmental science, and geography departments across the globe, as well as professionals in environmental protection agencies and consultancies, will find this book invaluable. It is likely to be the course text for every undergraduate/MSc hydrology course in the UK and in many cases overseas too.

Hillslope and Watershed Hydrology-Christopher J. Duffy 2018-09-14 This book is a printed edition of the Special Issue “Hillslope and Watershed Hydrology” that was published in Water

Practical Hydroinformatics-Robert J. Abrahart 2008-10-24 Hydroinformatics is an emerging subject that is expected to gather speed, momentum and critical mass throughout the forthcoming decades of the 21st century. This book provides a broad account of numerous advances in that field - a rapidly developing discipline covering the application of information and communication technologies, modelling and computational intelligence in aquatic environments. A systematic survey, classified according to the methods used (neural networks, fuzzy logic and evolutionary optimization, in particular) is offered, together with illustrated practical applications for solving various water-related issues. ...